Entanglement

Fabio A. González QCP 2020-2

Universidad Nacional de Colombia

1. Two Qubits

- q_{1}, q_{2} each one has two possible states $\left.\{10 \geqslant 11\rangle\right\}$
-4 possible combinations $\quad \begin{array}{ll}|0\rangle \otimes|0\rangle=100\rangle \\ & |0\rangle \otimes|1\rangle=101\rangle\end{array} r l$
- General state $\left.|\psi\rangle=\alpha_{00}|00\rangle+\alpha_{0,}|01\rangle+\alpha_{10}|10\rangle+\alpha_{11} 11\right\rangle$
- More than 2 quits, $e^{2^{n}}$ terms

$$
|\psi\rangle=\underbrace{}_{\underbrace{\alpha_{000.0}}_{n}}|00 \ldots 0\rangle+\underbrace{\alpha_{0 \ldots 01}}_{n}|0 . .01\rangle \cdots+\underbrace{\alpha_{1}}_{n}|1 \ldots 1\rangle
$$

2. Measurement on a two Cubits System

- Measurement only gives information about the basis states
- 2 quits system $\longrightarrow 2$ bits
- Probability of getting $x \in\{0,1\}^{2}$ is $\left|\alpha_{x}\right|^{2} \quad x=00,01,10,11$
- If we measure $|x\rangle=|i j\rangle$ the new state of q_{i} is $|i\rangle$ and the new state of q_{2} is $|j\rangle$
- What does happen if you only measure 1 quit?

$$
\begin{aligned}
& \quad|\psi\rangle=\alpha_{00}|00\rangle+\alpha_{0,1}|01\rangle+\alpha_{10}|10\rangle+\alpha_{11}|11\rangle \\
& -\operatorname{Pr}\left(q_{1}=1\right)=P\left(q_{1}=1\right)=P\left(q_{1}=1, q_{0}=0\right)+P\left(q_{1}=1, q_{0}=1\right)=\left|\alpha_{10}\right|^{2}+\left|\alpha_{1,}\right|^{2} \\
& -\left|\psi_{\text {new }}\right\rangle=\frac{\alpha_{10}|10\rangle+\alpha_{11}|11\rangle}{\sqrt{\left|\alpha_{10}\right|^{2}+\left|\alpha_{11}\right|^{2}}}
\end{aligned}
$$

3. Entanglement
$\begin{array}{ll}\text { Suppose } & q_{1} \rightarrow\left|\psi_{1}\right\rangle=\frac{3}{5}|0\rangle+\frac{4}{5}|1\rangle \\ q_{2} \rightarrow\left|\psi_{2}\right\rangle=\frac{1}{\sqrt{2}} & |0\rangle+\frac{1}{\sqrt{2}}\end{array}|1\rangle \quad q_{1} q_{2} \rightarrow|\psi\rangle=\frac{3}{5 \sqrt{2}}|00\rangle+\frac{3}{5 \sqrt{2}}|01\rangle+\frac{4}{5 \sqrt{2}}|10\rangle+\frac{4}{5 \sqrt{2}}|11\rangle$

- Consider, $|\psi\rangle=\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle)$, Can you de compose in $\left|\psi_{1}\right\rangle$ and $\left|\psi_{2}\right\rangle$

$$
\begin{aligned}
& \left|\psi_{1}\right\rangle=a|0\rangle+b|1\rangle \\
& \left|\psi_{2}\right\rangle=c|0\rangle+d|1\rangle
\end{aligned}
$$

$$
\left|\psi_{1}\right\rangle \otimes\left|\psi_{2}\right\rangle=\left(\begin{array}{ll}
a c \\
a & d \\
b c \\
b & d
\end{array}\right)=\left(\begin{array}{c}
1 / \sqrt{2} \\
0 \\
0 \\
1 / \sqrt{2}
\end{array}\right)=|\psi\rangle
$$

- This is an entangled state \longleftrightarrow non- separable state

$$
\text { - } \quad \operatorname{Pr}\left(q_{1}=0\right)=\left|\frac{1}{\sqrt{2}}\right|^{2}=\frac{1}{2}=\operatorname{Pr}\left(q_{1}=1\right)
$$

- If you measure $q_{1}=0$ what's the new state of the system.?

$$
\left|\psi_{\text {new }}\right\rangle=|00\rangle \Rightarrow q_{1}, q_{2}=|0\rangle
$$

- In entangled states we cannot determine the state of a quit separately
- Correlation between measurements doesn't depend on the measurement basis

$$
\begin{aligned}
& \left\{|v\rangle,\left|v^{\perp}\right\rangle\right\} \\
& |0\rangle=\alpha|v\rangle+\beta\left|v^{\perp}\right\rangle, \quad|1\rangle=-\beta|v\rangle+\alpha\left|v^{\perp}\right\rangle \\
& \left|\Phi^{+}\right\rangle=\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle)= \\
& =\frac{1}{\sqrt{2}}\left(\left(\alpha|v\rangle+\beta \mid v^{+}\right) \otimes\left(\alpha|v\rangle+\beta\left|v^{+}\right\rangle\right)\right. \\
& \\
& = \\
& =\frac{1}{\sqrt{2}}\left(\left(-\beta|v\rangle+\alpha\left|v^{\perp}\right\rangle\right) \otimes\left(-\beta|v\rangle+\alpha\left|v^{+}\right\rangle\right)^{\prime},\right. \\
& \\
& =
\end{aligned}
$$

2. Two quit operators

- Unitary transformations on $\mathbb{C}^{4}, 4 \times 4$ matrix $U, U U^{+}=u^{+} U=$?
- Example
- Any unitary transform on two quits can be dosely approximated by sequences

7 \uparrow
Control
bit
Controlled
bit bit of CNOT and single quit operations

- How to apply, a one-qubit operator to one quit of a two quits system?

